The 2018 presidential election in Finland, some observations from a news analytics perspective

The presidential elections 2018 in Finland were quite lame. The incumbent president, Sauli Niinistö, was a very strong candidate from the offset and was predicted to win in the first round, which he did. You can read more about the elections for instance on Wikipedia.

Boring election or not, from an analytics perspective there is always something interesting to learn. So I dug into the data and tried to understand how the elections had played out on our site, hbl.fi (which is the largest swedish language news site in Finland).

We published a total of 275 articles about the presidential election of 2018. 15 of these were published already in 2016, but the vast majority (123) was pubslished in January 2018.

Among the readers the interest for the elections grew over time, which might not be that extraordinery (for Finnish circumstances at least). Here are the pageviews per article over time (as Google Analytics samples the data heavily i used Supermetrics to retrieve the unsampled data – filtering on a custom dimension to get only the articles about the election):

President_2018_per_day

Not much interesting going on there. So, I also took a look at the traffic coming in via social media. Twitter is big in certain circles, but not really that important a driver of traffic to our site. Facebook, on the other hand, is quite interesting.

Using Supermetrics again, and doing some manual(!) work too, I matched the Facebook post reach for a selection of our articles to the unsampled pageviews measured by Google Analytics.  From this, it is apparent that approximately one in ten persons reached on Facebook ended up reading our articles on our site. Or more, as we know that some of the social media traffic is dark.

The problem with traffic that originates from Facebook is that people tend to jump in and read one article and then jump out again. Regarding the presidential elections this was painfully clear, the average pageviews was down to 1,2 for sessions originating from Facebook. You can picture this as: Four out of five people read only the one article that was linked to Facebook and then they leave our site. One out of five person reads an additional article and then decides to leave. But nobody reads three or more articles. This is something to think about – we get a good amount of traffic on these articles from Facebook but then we are not that good at keeping the readers on board. There’s certainly room for improvement.

What about the content then? Which articles interested the readers? Well, with good metadata this is not that difficult an analysis. Looking at the articles split by the candidate they covered and the time of day the article was published:

President_2018_per_candidate

(The legend of the graph is in swedish => “Allmän artikel” means a general article, i.e. either it covered many candidates or it didn’t cover any candidates at all.)

Apart from telling us which candidates attracted the most pageviews, this also clearly shows how many articles were written about which candidate. A quite simple graph in itself, a scatter diagram coloured by the metadata, but revealing a lot of information. From this graph there are several take aways; at what time should we (not) publish, which candidates did our readers find interesting, should we have written more/less about one candidate or the other. When you plot these graphs for all different kinds of meta data, you get a quite interesting story to tell the editors!

So even a boring election can be interesting when you look at the data. In fact, with data, nothing is ever boring 😉

 

A note about the graphs: The first graph in this post was made with Google Sheets’ chart function. It was an easy to use, and good enough, solution to tell the story of the pageviews. Why use something more fancy? The second graph I drew in Tableau, as the visualisation options are so much better there than in other tools. I like using the optimal tool for the task, not overkilling easy stuff with importing it to Tableau, but also not settling for lesser quality when there is a solution using a more advanced tool. If I had the need to plot the same graphs over and over again, I would go with an R-script to decrease the need of manual clicking and pointing.

 

Advertisements

Google Analytics and R for a news website

For a news site understanding the analytics is essential. The basic reporting provided by Google Analytics (GA) gives us good tools for monitoring the performance on a daily bases. Even the standard version of GA (which we use) offers a wide variety of reporting options which carries you a long way. However, when you have exhausted all these options and need more, you can either use some kind of tool like Supermetrics or then query the GA api directly. For the latter purpose, I’m using R.

Querying GA with R is a very powerful way to access the analytics data. Where GA only allows you to use two dimensions at the same time, using R you can query several dimensions and easily join different datasets to combine all your data into one large data set that you then can use for further analysis. Provided you know R of course – otherwise I suggest you use a tool like the above mentioned Supermetrics.

For querying GA with R I have used the package RGoogleAnalytics. There are other packages out there, but as for many other packages in R, this is the one I first stumbled upon and then continued using… And so far, I’m quite happy with it, so why change?!

Setting up R to work with GA is quite straight forward, you can find a nice post on it here.

Recently I needed to query GA for our main site’s (hbl.fi, a newssite about Finland in swedish) different measures such as sessions, users, pageviews but also some custom dimensions including author, publish date etc. The aim was to collate this data for last year and then run some analysis on it.

I started out querying the api for the basic information: date (for when the article was read), publish date (a custom dimension), page path, page title and pageviews. After this I queried several different custom dimension one by one and joined them in R with the first dataset. This is necessary as GA only returns rows where there are no NA:s. And as I know that our metadata sometimes is incomplete, this solution allows me to stitch together a dataset that is as complete as possible.

This is my basic query:

# Init() combines all the query parameters into a list that is passed as an argument to QueryBuilder()
query.list <- Init(start.date = "2017-01-01",
                  end.date = "2017-12-31",
                  dimensions = "ga:date,ga:pagePath,ga:pageTitle,ga:dimension13", 
                  metrics = "ga:sessions,ga:users,ga:pageviews,ga:avgTimeOnPage",
                  max.results = 99999,
                  sort = "ga:date",
                  table.id = "ga:110501343")

# Create the Query Builder object so that the query parameters are validated
ga.query <- QueryBuilder(query.list)

# Extract the data and store it in a data-frame
ga.data <- GetReportData(ga.query, token, split_daywise=T)

 

Note this in the Init()-function:

  • You can have a maximum of 7 dimensions and 10 metrics
  • The max.results can (according to my experience) be at the most 99,999 (at 100,000 you get an error).
  • table.id is called ViewID in your GA’s admin panel under View Settings
  • If you want to use a GA segment* in your query, add the following attribute: segments = “xxxx”

 

Note this in the GetReportData-function:

  • Use split_daywise = TRUE to minimize the sampling of GA.
  • If your data is sampled the output returns the percentage of sessions that were used for the query. Hence, if you get no message, the data is unsampled.

 

* Finding the segment id isn’t as easy as finding the table id. It isn’t visible from within Google Analytics (or at least I haven’t found it). The easiest way to do this is to use the query explorer tool provided by Google. This tool is actually meant to aid you in creating api query UPIs but comes in handy for finding the segment id. Just authorise the tool to access your GA account and select the proper view. Go to the segment drop down box and select the segment you want. This will show the segment id which is in format gaid::-2. Use this inside the quotes for the segments attribute.

 

The basic query returned 770,000 rows of data. The others returned between 250,000 and 490,000 rows. After doing some cleaning and joining these together (using dplyers join functions) I ended up with a dataset of 450,000 rows. Each containing the amount of readers per article per day, information on category, author and publish date as well as amount of sessions and pageviews for the given day. All ready for the actual analysing of the data!

 

Supermetrics – Easy access to much data!

One nice and very handy tool for extracting data from various sources is an add-on to Google Sheets called Supermetrics. Using it you can access several different data sources, e.g. Google Analytics, Facebook Insights, Google AdWords, Twitter Ads, Instagram and many more. Once installed (and that’s super easy) it opens up as a side bar to your Sheet, like this:

supermetrics_sidebar

Then it’s more or less clicking the right options from the dropdown menus and you have a nice and handy report. Here’s some tips for using Google Analytics with Supermetrics:

1) Make sure that the account you are logged in to Google Sheets (and thus Supermetrics) also has access to the data you want to access.

2) Remember to have you the cell A1 selected before opening Supermetrics or your data will appear in some random corner of your spredsheet.

3) Pay attention when selecting the dates. If you plan to make a report that is auto-refreshing you need to choose the dates using the predefined intervals like today, yesterday, last week, last month, year to date etc. If you chose a custom interval, let’s say January 1st to Janyary 7th, the report will always show the result for these dates even though you ask it to refresh weekly.

4) Split by… rows and/or columns. This is the main benefit compared to querying Google Analytics directly. Here you can specify several dimensions for your data, in GA you only get two.

5) You don’t have to define any segments or filters. If you do, make sure that the account you’re logged in as also has access to these in Google Analytics (and that they are available for the view you are querying).

6) Under options make sure to tick both Add note to query results showing whether Google has used sampling and Try to avoid Google’s data sampling. You’ll see that many times Supermetrics is capable of supplying you with unsampled data where Google itself would give you sampled data.

Here’s a simple example, querying one of our sites for 2017 sessions, splitting the data by operating system and system version:

2017operatingsystems

Nothing spectacular, but very easy to use, easy to share. Absolutely one of my favourite tools!